40,942 research outputs found

    Spin and pseudospin symmetries of the Dirac equation with confining central potentials

    Full text link
    We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar SS and vector VV confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+CV=\pm S+C, where CC is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not happen for potentials going to zero at large distances, used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for anti-fermions.Comment: 7 pages, uses revtex macro

    New solutions of the D-dimensional Klein-Gordon equation via mapping onto the nonrelativistic one-dimensional Morse potential

    Full text link
    New exact analytical bound-state solutions of the D-dimensional Klein-Gordon equation for a large set of couplings and potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of irrational equations at the worst. Several analytical results found in the literature, including the so-called Klein-Gordon oscillator, are obtained as particular cases of this unified approac

    Evidence for Lattice Effects at the Charge-Ordering Transition in (TMTTF)2_2X

    Full text link
    High-resolution thermal expansion measurements have been performed for exploring the mysterious "structureless transition" in (TMTTF)2_{2}X (X = PF6_{6} and AsF6_{6}), where charge ordering at TCOT_{CO} coincides with the onset of ferroelectric order. Particularly distinct lattice effects are found at TCOT_{CO} in the uniaxial expansivity along the interstack c*\textbf{\textit{c*}}-direction. We propose a scheme involving a charge modulation along the TMTTF stacks and its coupling to displacements of the counteranions X−^{-}. These anion shifts, which lift the inversion symmetry enabling ferroelectric order to develop, determine the 3D charge pattern without ambiguity. Evidence is found for another anomaly for both materials at TintT_{int} ≃\simeq 0.6 ⋅\cdot TCOT_{CO} indicative of a phase transition related to the charge ordering

    Consistent Truncation to Three Dimensional (Super-)gravity

    Get PDF
    For a general three dimensional theory of (super-)gravity coupled to arbitrary matter fields with arbitrary set of higher derivative terms in the effective action, we give an algorithm for consistently truncating the theory to a theory of pure (super-)gravity with the gravitational sector containing only Einstein-Hilbert, cosmological constant and Chern-Simons terms. We also outline the procedure for finding the parameters of the truncated theory. As an example we consider dimensional reduction on S^2 of the 5-dimensional minimal supergravity with curvature squared terms and obtain the truncated theory without any curvature squared terms. This truncated theory reproduces correctly the exact central charge of the boundary CFT.Comment: LaTeX file, 22 page

    Localization to Enhance Security and Services in Wi-Fi Networks under Privacy Constraints

    Get PDF
    Developments of seamless mobile services are faced with two broad challenges, systems security and user privacy - access to wireless systems is highly insecure due to the lack of physical boundaries and, secondly, location based services (LBS) could be used to extract highly sensitive user information. In this paper, we describe our work on developing systems which exploit location information to enhance security and services under privacy constraints. We describe two complimentary methods which we have developed to track node location information within production University Campus Networks comprising of large numbers of users. The location data is used to enhance security and services. Specifically, we describe a method for creating geographic firewalls which allows us to restrict and enhance services to individual users within a specific containment area regardless of physical association. We also report our work on LBS development to provide visualization of spatio-temporal node distribution under privacy considerations
    • …
    corecore